Tropical Cyclones


Ajit Kumar AJIT KUMARWISDOM IAS, New Delhi.

The word ‘cyclone’ has been derived from Greek word ‘cyclos’ which means ‘coiling of a snake’. The word cyclone was coined by Heary Piddington who worked as a Rapporteur in Kolkata during British rule. The terms “hurricane” and “typhoon” are region specific names for a strong “tropical cyclone”. Tropical cyclones are called “Hurricanes” over the Atlantic Ocean and “Typhoons” over the Pacific Ocean.
A tropical cyclone is a rotational low pressure system in tropics when the central pressure falls by 5 to 6 hPa from the surrounding and maximum sustained wind speed reaches 34 knots (about 62 kmph). It is a vast violent whirl of 150 to 800 km, spiraling around a centre and progressing along the surface of the sea at a rate of 300 to 500 km a day.
Tropical Cyclone can be compared to a heat engine. The energy input is from warm water and humid air over tropical oceans. Release of heat is through condensation of water vapour to water droplets/rain. Only a small percentage (3%) of this released energy is converted into Kinetic energy to maintain cyclone circulation (windfield). A mature cyclone releases energy equivalent to that of 100 hydrogen bombs.
As the earth’s rotation sets up an apparent force (called the Coriolis force) that pulls the winds to the right in the Northern Hemisphere (and to the left in the Southern Hemisphere). So, when a low pressure starts to form over north of the equator, the surface winds will flow inward trying to fill in the low and will be deflected to the right and a counter-clockwise rotation will be initiated. The opposite (a deflection to the left and a clockwise rotation) will occur south of the equator.
This Coriolis force is too tiny to effect rotation in, for example, water that is going down the drains of sinks and toilets. The rotation in those will be determined by the geometry of the container and the original motion of the water. Thus, one can find both clockwise and counter-clockwise flowing drains no matter what hemisphere you are located. If you don’t believe this, test it out for yourself.
The tropical cyclones form over ocean basins in lower latitudes of all oceans except south Atlantic and southeast Pacific. The tropical cyclones develop over the warm water of the Bay of Bengal and the Arabian Sea. The favourable ocean basins for development of cyclonic storms are shown in the figure below.
In India
The low pressure system over Indian region are classified based on the maximum sustained winds speed associated with the system and the pressure deficit/ number of closed isobars associated with the system. The pressure criteria is used, when the system is over land and wind criteria is used, when the system is over the sea. The system is called as low if there is one closed isobar in the interval of 2 hPa. It is called depression, if there are two closed isobars, a deep depression, if there are three closed isobars and cyclonic storm if there are four or more closed isobars. Considering wind criteria, the system with wind speed of 17-27 knots is called as depression and the low pressure system with maximum sustained 3 minutes surface winds between 28-33 knots is called a deep depression. The system with maximum sustained 3 minutes surface winds of 34 knots or more is called as cyclonic storm.


Structure of a Tropical Cyclone


A fully developed tropical cyclone has a central cloud free region of calm winds, known as the “eye” of the cyclone with diameter varying from 10 to 50 km. Surrounding the eye is the “wall cloud region” characterised by very strong winds and torrential rains, which has the width of about 10 to 150 km. The winds over this region rotate around the centre and resemble the “coils of a snake”. Wind speed fall off gradually away from this core region, which terminate over areas of weaker winds with overcast skies and occasional squall .There may be one or more spiral branch in a cyclone where higher rainfall occurs. The vertical extent of the cyclone is about 15 km.
The “eye” of a tropical cycloneis a roughly circular area of comparatively light winds and fair weather found at the centre of a severe tropical cyclone. Although the winds are calm at the axis of rotation, strong winds may extend well into the eye. There is little or no precipitation and sometimes blue sky or stars can be seen. The eye is the region of lowest surface pressure and warmest temperatures aloft – the eye temperature may be 10°C warmer or more at an altitude of 12 km than the surrounding environment, but only 0-2°C warmer at the surface in the tropical cyclone. Eyes range in size from 8 km to over 200 km across, but most are approximately 30-60 km in diameter.
The eye is surrounded by the “eyewall”, the roughly circular ring of deep convection, which is the area of highest surface winds in the tropical cyclone. The eye is composed of air that is slowly sinking and the eyewall has a net upward flow as a result of many moderate – occasionally strong – updrafts and downdrafts. The eye’s warm temperatures are due to compressional warming of the subsiding air. Most soundings taken within the eye show a low-level layer, which is relatively moist, with an inversion above – suggesting that the sinking in the eye typically does not reach the ocean surface, but instead only gets to around 1-3 km of the surface.
The exact mechanism by which the eye forms remains somewhat controversial. One idea suggests that the eye forms as a result of the downward directed pressure gradient associated with the weakening and radial spreading of the tangential wind field with height (Smith, 1980). Another hypothesis suggests that the eye is formed when latent heat release in the eyewall occurs, forcing subsidence in the storm’s centre (Shapiro and Willoughby, 1982). It is possible that these hypotheses are not inconsistent with one another. In either case, as the air subsides, it is compressed and warms relative to air at the same level outside the eye and thereby becomes locally buoyant. This upward buoyancy approximately balances the downward directed pressure gradient so that the actual subsidence is produced by a small residual force.
Another feature of tropical cyclones that probably plays a role in forming and maintaining the eye is the eyewall convection. Convection in tropical cyclones is organized into long, narrow rainbands which are oriented in the same direction as the horizontal wind. Because these bands seem to spiral into the centre of a tropical cyclone, they are called “spiral bands”. Along these bands, low-level convergence is a maximum, and therefore, upper-level divergence is most pronounced above. A direct circulation develops in which warm, moist air converges at the surface, ascends through these bands, diverges aloft, and descends on both sides of the bands. Subsidence is distributed over a wide area on the outside of the rainband but is concentrated in the small inside area. As the air subsides, adiabatic warming takes place, and the air dries. Because subsidence is concentrated on the inside of the band, the adiabatic warming is stronger inward from the band causing a sharp contrast in pressure falls across the band since warm air is lighter than cold air. Because of the pressure falls on the inside, the tangential winds around the tropical cyclone increase due to increased pressure gradient. Eventually, the band moves toward the centre and encircles it and the eye and eyewall form.
Thus, the cloud-free eye may be due to a combination of dynamically forced centrifuging of mass out of the eye into the eyewall and to a forced descent caused by the moist convection of the eyewall. This topic is certainly one that can use more research to ascertain which mechanism is primary.
Some of the most intense tropical cyclones exhibit concentric eyewalls, two or more eyewall structures centreed at the circulation centre of the storm. Just as the inner eyewall forms, convection surrounding the eyewall can become organized into distinct rings. Eventually, the inner eye begins to feel the effects of the subsidence resulting from the outer eyewall, and the inner eyewall weakens, to be replaced by the outer eyewall. The pressure rises due to the destruction of the inner eyewall are usually more rapid than the pressure falls due to the intensification of the outer eyewall, and the cyclone itself weakens for a short period of time.


Formation of  Tropical Cyclone


In the tropics, weak pressure waves move from east to west. These are called easterly waves. Under favourable situation, a low pressure area forms over the area of an easterly trough. This gives rise to low level convergence. If the sea is warm (sea surface temperature > = 26.50 C) and there is sufficient upper level divergence i.e air is blown off at higher levels from the area of low pressure, the pressure gradually falls. Low level convergence coupled with upper level divergence gives rise to vertical motion taking moist air upwards. These moistures condense at higher levels (middle troposphere) and give out latent heat of condensation. Due to release of heat of condensation the area warms up resulting into further fall in pressure. This process continues and a low pressure
Hence, for tropical cyclogenesis, there are several favourable environmental conditions that must be in place. They are:-
(i) Warm ocean waters (of at least 26.5°C) throughout a sufficient depth (unknown how deep, but at least on the order of 50 m). Warm waters are necessary to fuel the heat engine of the tropical cyclone.
(ii) An atmosphere which cools fast enough with height such that it is potentially unstable to moist convection. It is the thunderstorm activity which allows the heat stored in the ocean waters to be liberated for the tropical cyclone development.
(iii) Relatively moist layers near the mid-troposphere (5 km). Dry mid levels are not conducive for allowing the continuing development of widespread thunderstorm activity.
(iv) A minimum distance of at least 500 km from the equator. For tropical cyclogenesis to occur, there is a requirement for non-negligible amounts of the Coriolis Force (attributed to earth’s rotation) to provide the near gradient wind balance to occur. Without the Coriolis Force, the low pressure of the disturbance cannot be maintained. This is the reason why the narrow corridor of width of about 300 km on either side of the equator is free from cyclones. Because of this there is no inter-hemispheric migration of tropical cyclones across the equator.
(v) A pre-existing near-surface disturbance with sufficient vorticity (rotation) and convergence. Tropical cyclones cannot be generated spontaneously. To develop, they require a weakly organized system with sizable spin and low level inflow.
(vi) Low values (less than about 10 m/s or 20 kts) of vertical wind shear between the lower (1.5 km) and the upper troposphere (12 km). Vertical wind shear is the magnitude of wind change with height. Large values of vertical wind shear disrupt the incipient tropical cyclone and can prevent genesis, or, if a tropical cyclone has already formed, large vertical shear can weaken or destroy the tropical cyclone by interfering with the organization of deep convection around the cyclone centre.
The above conditions are necessary, but not sufficient as many disturbances that appear to have favourable conditions do not develop. However, these criteria fit well over the north Indian Ocean


Life Period of Cyclones



Life period of a Tropical Cyclone over the north Indian Ocean is 5-6 days. It will have hurricane intensity for 2-4 days as against 6 days of global average. Life period of the longest lived Tropical cyclone in Indian seas is 14 days (2nd -15th Nov, 1886 & 16th – 29th Nov, 1964). Hurricane/Typhoon John lasted 31 days as it traveled both the Northeast and Northwest Pacific basins during August and September, 1994. (It formed in the Northeast Pacific, reached hurricane force there, moved across the dateline and was renamed Typhoon John, and then finally recurved back across the dateline and renamed Hurricane John again.) Hurricane Ginger was a tropical cyclone for 28 days in the North Atlantic Ocean back in 1971. It should be noted that prior to the weather satellite era (1961) many tropical cyclones’ life cycles could be underestimated.



Normal Movement of a Tropical Cyclone



Tropical Cyclones move as a whole. They casually move west-northwestwards or northwestwards in the northern hemisphere. The average speed is 15-20 kmph (360-480 km per day). They may change their direction of movement towards north. During this change their speed of movement decreases to 10 kmph or even less. A larger fraction of such storms later turn towards northeast and move northeastwards very fast at a speed of 25 kmph or more.



 


 

Saturday, 01st Feb 2014, 06:36:18 PM

Add Your Comment:
Post Comment